摘要: In order to get a better knowledge of the heat transfer in compressor cavities of aero-engines, the simplified rotating cavity with two-plane discs, a shaft and a cylindrical rim has been investigated numerically and compared with the available measurements. The numerical results in agreement with the available experiments show large-scale instabilities. The disk local Nusselt numbers show mainly radial rising distributions for the heated disks with radial rising temperature profiles. In the present work, at the Reynolds number of 20000, the disk local Nusselt numbers are the correlations of the local Grashof number to the power of 1.89~2.6, and the value of the power is increased as the rotational Reynolds number goes up. At the rotational Reynolds number of 800000, the local Nusselt numbers are the correlations of the local Grashof number to the power of 0.68~2.6, and the value of the power is decreased as Reynolds number goes up. The area-averaged disk Nusselt number is the correlation of the Reynolds number to the power of 0.479 and the rotational Grashof number to the power of 0.12.
摘要: 采用流线曲率法数学模型,结合跨声速轴流压气机的内部流场特征,拓展了一种非设计点特性计算方法.该方法基于近年来的国内外研究进展,考虑了非设计点工况下影响落后角及损失的诸多因素.对轴流跨声速压气机NASA(National Aeronautics and Space Administration)TP1669进行了数值计算,得到了展向参数分布和全工况下性能曲线,通过与实验值的对比和分析证明该方法和模型是可行的,可为压气机设计和优化提供参考.